Evaluating the Performance of Bayesian Estimates for Burr XII Inverse Rayleigh Parameters Using MCMC

Authors

  • Alaa A. Khalaf Ministry of Education, Diyala Education Directorate: Diyala, Iraq Author https://orcid.org/0000-0001-9098-5701
  • Mundher A. Khaleel Department of Mathematics, College of Computer Science and Mathematics, Tikrit University, Tikrit, Iraq. Author
  • Danial Mazarei Department of Statistics, Faculty of Intelligent Systems Engineering and Data Science, Persian GulfUniversity, Bushehr, Iran. Author
  • Ahlam H. Tolba Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt Author
  • Akeem A. Adepoju Department of Statistics, Aliko Dangote University of Science and Technology, Wudil, 713281, Kano. Nigeria Author

DOI:

https://doi.org/10.62933/z56q8971

Keywords:

Burr XII-Family, Bayesian estimator, maximum likelihood estimates, prior distribution, loss function

Abstract

This work applied multiple Bayesian approaches to estimate the parameters of the Burr XII Inverse Rayleigh (BXII-IR) Distribution.  For Bayesian estimators, needed priors distribution for the parameters and certain loss functions such squared error, general entropy, and linear-exponential, owing to the unavailability of closed-form solutions for Bayesian estimates with these loss functions.   Bayesian estimate employing the Markov Chain Monte Carlo (MCMC) approach were assessed for performance.  The simulation results for Bayesian methods indicate that all methods consistently estimate the parameters, with the LN2 loss function estimator demonstrating the highest efficiency as assessed by mean squared error (MSE), root mean squared error (RMSE), bias, Highest Posterior Density Intervals (HPD), average interval length (AIL), and coverage probability (CP).

References

[1] Leao, J., Saulo, H., Bourguignon, M., Cintra, R. J., Rego, L. C., & Cordeiro, G. M. (2022). On some properties of the beta inverse Rayleigh distribution. arXiv preprint arXiv, 4, 111-131.

[2] Ahmad, A., Ahmad, S. P., & Ahmed, A. (2014). Transmuted inverse Rayleigh distribution: A generalization of the inverse Rayleigh distribution. Mathematical Theory and Modeling, 4(7), 90-98.‏

[3] Fatima, K., & Ahmad, S. P. (2017). Weighted inverse Rayleigh distribution. International Journal of Statistics and Systems, 12(1), 119-137.‏

[4] Elgarhy, M., & Alrajhi, S. (2019). The odd Fréchet inverse Rayleigh distribution: Statistical properties and applications. J. Nonlinear Sci. Appl, 12, 291-299.‏

[5] Mohammed, H. F., & Yahia, N. (2019). On type II topp-leone inverse Rayleigh distribution. Applied Mathematical Sciences, 13(13), 607-615.‏

[6] Rao, G. S., & Mbwambo, S. (2019). Exponentiated inverse Rayleigh distribution and an application to coating weights of iron sheets data. Journal of probability and statistics, 2019(1), 7519429.‏

[7] Almarashi, A. M., Badr, M. M., Elgarhy, M., Jamal, F., & Chesneau, C. (2020). Statistical inference of the half-logistic inverse Rayleigh distribution. Entropy, 22(4), 449.‏

[8] Ali, M., Khalil, A., Ijaz, M., & Saeed, N. (2021). Alpha-Power Exponentiated Inverse Rayleigh distribution and its applications to real and simulated data. PloS one, 16(1), e0245253.‏

[9] Almetwally, E. M. (2021). Extended odd Weibull inverse Rayleigh distribution with application on carbon fibres. Math. Sci. Lett, 10(1), 5-14.‏

[10] El-Sherpieny, E. S. A., Muhammed, H. Z., & Almetwally, E. M. (2023). A new inverse Rayleigh distribution with applications of COVID-19 data: Properties, estimation methods and censored sample. Electronic Journal of Applied Statistical Analysis, 16(2), 449-472.‏

[11] El-Saeed, A. R., Ruidas, M. K., & Tolba, A. H. (2025). Estimation and Bayesian prediction for new version of Xgamma distribution under progressive type-II censoring. Symmetry, 17(3), 457.‏

[12] Almetwally, E. M., Tolba, A. H., & Ramadan, D. A. (2025). Bayesian and non-Bayesian estimations for a flexible reduced logarithmic-inverse Lomax distribution under progressive hybrid type-I censored data with a head and neck cancer application. AIMS Mathematics, 10(4), 9171-9201.‏

[13] Mudasir, S., Bhat, A. A., Ahmad, S. P., Rehman, A., Jawa, T. M., Sayed-Ahmed, N., & Tolba, A. H. (2024). A dual approach to parameter estimation classical vs. Bayesian methods in power Rayleigh modelling. Thermal Science, 28(6 Part B), 4877-4894.‏

[14] Hamdy, A., & Almetwally, E. M. (2023). Bayesian and non-bayesian inference for the generalized power akshaya distribution with application in medical. Computational Journal of Mathematical and Statistical Sciences, 2(1), 31-51.‏

[15] Tolba, A. (2022). Bayesian and non-Bayesian estimation methods for simulating the parameter of the Akshaya distribution. Computational Journal of Mathematical and Statistical Sciences, 1(1), 13-25.‏

[16] Tolba, A. H., Almetwally, E. M., & Ramadan, D. A. (2022). Bayesian estimation of a one parameter Akshaya distribution with progressively type ii censord data. focus, 1, 1.‏

[17] Tolba, A. H., Almetwally, E. M., Sayed-Ahmed, N., Jawa, T. M., Yehia, N., & Ramadan, D. A. (2022). Bayesian and non-Bayesian estimation methods to independent competing risks models with type II half logistic weibull sub-distributions with application to an automatic life test. Thermal Science, 26(Spec. issue 1), 285-302.‏

[18] Khalaf, A. A. (2024). The New Strange Generalized Rayleigh Family: Characteristics and Applications to COVID-19 Data. Iraqi Journal For Computer Science and Mathematics, 5(3), 32.‏

[19] Khalaf, A. A., Khaleel, M. A., Jawa, T. M., Sayed-Ahmed, N., & Tolba, A. H. (2025). A Novel Extension of the Inverse Rayleigh Distribution: Theory, Simulation, and Real-World Application. Appl. Math, 19(2), 467-488.‏

[20] Khalaf, A. A., & Khaleel, M. A. (2025, March). The Odd Burr XII Exponential distribution: Properties and applications. In AIP Conference Proceedings (Vol. 3264, No. 1, p. 050039). AIP Publishing LLC.‏

[21] Khalaf, A. A., Khaleel, M. A., Tolba, A. H., & Ahmed, N. S. (2025).Classical Inference for the Five Parameter Exponentiated Weibull Distribution: Properties and Applications in Health and Reliability.‏ 14( 3), 469-492.

[22] Bashiru, S. O., Isa, A. M., Khalaf, A. A., Khaleel, M. A., Arum, K. C., & Anioke, C. L. (2025). A Hybrid Cosine Inverse Lomax-G Family of Distributions with Applications in Medical and Engineering Data. Nigerian Journal of Technological Development, 22(1), 261-278.‏

[23] Khalaf, A. A., Ibrahim, M. Q., & Noori, N. A. (2024). [0, 1] Truncated Exponentiated Exponential Burr type X Distribution with Applications. Iraqi Journal of Science, 4428-4440.‏

[24] Isa, A. M., Bashiru, S. O., & Kaigama, A. (2024). Topp-Leone Exponentiated Burr XII Distribution: Theory and Application to Real-Life Data Sets. Iraqi Statisticians Journal, 1(1), 63-72.‏

[25] Bashiru, S. O., Khalaf, A. A., & Isa, A. M. (2024). TOPP-LEONE EXPONENTIATED GOMPERTZ INVERSE RAYLEIGH DISTRIBUTION: PROPERTIES AND APPLICATIONS. Reliability: Theory & Applications, 19(3 (79)), 59-77.‏

[26] Bashiru, S. O., Khalaf, A. A., Isa, A. M., & Kaigama, A. (2024). ON MODELING OF BIOMEDICAL DATA WITH EXPONENTIATED GOMPERTZ INVERSE RAYLEIGH DISTRIBUTION. Reliability: Theory & Applications, 19(3 (79)), 460-475.‏

[27] Noori, N. A., Khalaf, A. A., & Khaleel, M. A. (2023). A New Generalized Family of Odd Lomax-G Distributions: Properties and Applications. Advances in the Theory of Nonlinear Analysis and its Applications, 7(4), 01-16.‏

[28] Noori, N. A., Khalaf, A. A., & Khaleel, M. A. (2024). A new expansion of the Inverse Weibull Distribution: Properties with Applications. Iraqi Statistians Journal, 1(1), 52-62.‏

[29] Khalaf, A., Yusur, K., & Khaleel, M. (2023). [0, 1] Truncated Exponentiated Exponential Inverse Weibull Distribution with Applications of Carbon Fiber and COVID-19 Data. Journal of Al-Rafidain University College For Sciences (Print ISSN: 1681-6870, Online ISSN: 2790-2293), (1), 387-399.‏

[30] Jasim, M. M., Abdal-Hammed, M. K., & Alobaidi, M. (2025, March). The Odd Generalized Exponential Burr type X distribution: Theorems and applications. In AIP Conference Proceedings (Vol. 3264, No. 1, p. 050028). AIP Publishing LLC.‏

[31] Khalaf, A. A., & khaleel, M. A. (2022, November). [0, 1] Truncated exponentiated exponential gompertz distribution: Properties and applications. In AIP Conference Proceedings (Vol. 2394, No. 1, p. 070035). AIP Publishing LLC.‏

[32] Khalaf, A., & Khaleel, M. A. (2020). Truncated exponential marshall-olkin-gompertz distribution properties and applications. Tikrit Journal of Administration and Economics Sciences, 16, 483-497.

[33] Varian, H. R. (1975). A Bayesian approach to real estate assessment. Studies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savage.

[34] Doostparast, M., Akbari, M. G., & Balakrishna, N. (2011). Bayesian analysis for the two-parameter Pareto distribution based on record values and times. Journal of Statistical Computation and Simulation, 81(11), 1393–1403.

[35] Calabria, R., & Pulcini, G. (1996). Point estimation under asymmetric loss functions for left-truncated exponential samples. Communications in Statistics-Theory and Methods, 25(3), 585–600.‏

[36] Khalaf, A. A., & Khaleel, M. A. (2025). Estimation Methods: Inference Classical and Bayesian of Extended Inverse Exponential Distribution. Iraqi Statisticians journal, 29-42.‏

fig 4

Downloads

Published

2025-07-18

Issue

Section

Original Articles

How to Cite

Evaluating the Performance of Bayesian Estimates for Burr XII Inverse Rayleigh Parameters Using MCMC. (2025). Iraqi Statisticians Journal, 2(2), 49-63. https://doi.org/10.62933/z56q8971