Enhancing the Cosine-Lomax Distribution: A New Exponentiated Version with Improved Flexibility and Real-World Applications

Authors

  • Ibrahim Ali 2Department of Mathematics and Computer Science, Borno State University, Maiduguri, Nigeria. Author
  • Alhaji Modu Isa Department of Mathematics and Computer Science, Borno State University, Maiduguri, Nigeria. Author
  • Sule Omeiza Bashiru Confluence University of Science and Technology, Osara, Kogi State, Nigeria Author https://orcid.org/0000-0002-6442-3286
  • Ibrahim Ismaila Itopa Department of Mathematical Sciences, Prince Abubakar Audu University, Anyigba, Kogi State, Nigeria. Author

DOI:

https://doi.org/10.62933/k28xzz19

Keywords:

Exponentiated G family, cosine Lomax distribution, goodness-of-fit., Simulation, Maximum product of spacings

Abstract

In this paper, we introduce a novel flexible probability distribution called the Exponentiated Cosine Lomax distribution (ECLD), developed by compounding the exponentiated family with the cosine Lomax distribution. The proposed model incorporates an additional shape parameter, enhancing its flexibility to model complex real-world data with heavy tails, skewness, and non-monotonic hazard rates. We derive key statistical properties of the ECLD, including moments, moment-generating function, quantile function, and hazard rate. The model parameters are estimated using the maximum likelihood estimation (MLE) and maximum product of spacings (MPS) methods. A comprehensive simulation study is conducted to assess the consistency and efficiency of the estimators. To demonstrate the practical applicability of the ECLD, we analyze two real-world datasets. Comparative studies with existing models, including the Odd Frechet Lomax, half logistic Lomax, cosine Lomax, Lomax and sine Lomax distributions, reveal that the proposed ECLD provides a significantly better fit based on goodness-of-fit criteria such as the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and Kolmogorov-Smirnov (K-S) test. The findings suggest that the ECL distribution is a robust alternative for modeling skewed and heavy-tailed data in various fields.

References

[1]Shrahili, M., Elbatal, I., & Elgarhy, M. (2021). Sine half-logistic inverse Rayleigh distribution: Properties, estimation, and applications in biomedical data. Journal of Mathematics, 2021, 4220479.

[2] Chaudhary, A. K., & Kumar, V. (2021). The ArcTan Lomax distribution with properties and applications. International Journal of Scientific Research in Science, Engineering and Technology, 8(1), 117–125.

[3] Isa, A. M., Bashiru, S. O., Ali, B. A., Adepoju, A. A., & Itopa, I. I. (2022). Sine-exponential distribution: Its mathematical properties and application to real dataset. UMYU Scientifica, 1(1), 127–131.

[4] Alomair, M. A., Ahmad, Z., Rao, G. S., Al-Mofleh, H., Khosa, S. K., & Al Naim, A. S. (2023). A new trigonometric modification of the Weibull distribution: Control chart and applications in quality control. PLOS ONE, 18(7), e0286593.

[5] David, I. J., Stephen, M., & Thomas, E. J. (2023). Reliability analysis with new sine inverse Rayleigh distribution. Journal of Reliability and Statistical Studies, 16(2), 255–268.

[6] Sapkota, L. P., Alsahangiti, A. M., Kumar, V., Gemeay, A. M., Bakr, M. E., Balogun, O. S., & Muse, A. H. (2023). Arc-tangent exponential distribution with applications to weather and chemical data under classical and Bayesian approach. IEEE Access, 11, 115462–115476.

[7] Mustapha, B. A., Isa, A. M., Sule, O. B., & Itopa, I. I. (2023). Sine-Lomax distribution: Properties and applications to real data sets. FUDMA Journal of Sciences, 7(4), 60–66.

[8] Faruk, M. U., Isa, A. M., & Kaigama, A. (2024). Sine-Weibull distribution: Mathematical properties and application to real datasets. Reliability: Theory & Applications (RT&A), 19(1), 65–72.

[9] Kumar, P., Sapkota, L. P., Kumar, V., Tashkandy, Y. A., Bakr, M. E., Balogun, O. S., & Gemeay, A. M. (2024). A new class of cosine trigonometric lifetime distribution with applications. Alexandria Engineering Journal, 106, 664–674.

[10] Bashiru, S. O., Isa, A. M., & Ali, I. (2024). Cosine Gompertz Distribution: Properties, simulation and application to COVID-19 and reliability engineering datasets. Confluence University Journal of Science and Technology, 1(2), 42–52.

[11] Mir, A. A. & Ahmad, S. P. (2024). Modeling and analysis of sine power Rayleigh distribution: Properties and applications. Reliability: Theory & Applications (RT&A), 19(1), 703–716.

[12] Bashiru, S. O., Ali, I., Auwal, A. M., & Isa, A. M. (2024). Sine Type II Topp-Leone Exponential Distribution: Properties, simulation and application. Confluence University Journal of Science and Technology, 1(2), 126–137.

[13] Joel, J., Yakura, B. S., Aniah-Betiang, E. I., Iseyemi, S. O., & Ieren, T. G. (2024). A sine Lomax-exponential distribution: Its properties, simulation and applications to survival data. African Journal of Mathematics and Statistics Studies, 7(4), 296–319.

[14] Hassan, A., Saudi, O., & Nagy, H. (2024). A New Three-Parameter Inverted Exponentiated Weibull Distribution: Statistical Inference and Application. The Egyptian Statistical Journal, 68(2), 34-64.

[15] Bashiru, S. O., Isa, A. M., Itopa, I. I., Chinedu, A. K., & Ebele, O. H. (2025). The sine Topp-Leone exponentiated exponential distribution with application to real-life data. Sule Lamido University Journal of Science & Technology, 10(1), 90–100.

[16] Bashiru, S. O., Isa, A. M., Khalaf, A. A., Khaleel, M. A., Arum, K. C., & Anioke, C. L. (2025). A hybrid cosine inverse Lomax-G family of distributions with applications in medical and engineering data. Nigerian Journal of Technological Development, 22(1), 261–278.

[17] Isa, A. M., Khalaf, A. A., & Bashiru, S. O. (2024). Some properties of the cosine Lomax distribution with applications. Iraqi Journal for Applied Science, 1(2), 1–11.

[18] Gupta, R. C., Gupta, P. L., & Gupta, R. D. (1998). Modeling failure time data by Lehman alternatives. Communications in Statistics - Theory and Methods, 27(4), 887–904.

[19] Gemeay, A. M., Alsadat, N., Chesneau, C., & Elgarhy, M. (2024). Power unit inverse Lindley distribution with different measures of uncertainty, estimation and applications. AIMS Mathematics, 9(8), 20976–21024.

[20] Bashiru, S. O., Kayid, M., Sayed, R. M., Balogun, O. S., Hammad, A. T., & Abd El-Raouf, M. M. (2025). Transmuted inverse unit Teissier distribution: Properties, estimations and applications to medical and radiation sciences. Journal of Radiation Research and Applied Sciences, 18(1), 101208.

[21] Gemeay, A. M., Bashiru, S. O., Sapkota, L. P., Kayid, M., Dutta, S., & Mohammad, S. (2025). A new power transformed distribution with applications to radiotherapy and environmental datasets. Journal of Radiation Research and Applied Sciences, 18(2), 101339.

[22] Bashiru, S. O., Kayid, M., Sayed, R. M., Balogun, O. S., Abd El-Raouf, M. M., & Gemeay, A. M. (2025). Introducing the unit Zeghdoudi distribution as a novel statistical model for analyzing proportional data. Journal of Radiation Research and Applied Sciences, 18(1), 101204.

[23] Al-Marzouki, S. (2019). Statistical properties of Odd Frѐchet Lomax distribution. Mathematical Theory and Modeling, 9(1), 94–103.

[24] Anwar, M., & Zahoor, J. (2018). The half-logistic Lomax distribution for lifetime modeling. Journal of Probability and Statistics, 2018, Article ID 3152807.

[25] Lomax, K. S. (1954). Business failures: Another example of the analysis of failure data. Journal of the American Statistical Association, 49(268), 847–852.

[26] Hinkley, D. (1977). On quick choice of power transformation. Journal of the Royal Statistical Society: Series C (Applied Statistics), 26(1), 67–69.

[27] Van Montfort, M. A. J. (1970). On testing that the distribution of extremes is of type I when type II is the alternative. Journal of Hydrology, 11(4), 421–427.

fig 3

Downloads

Published

2025-06-21

Issue

Section

Original Articles

How to Cite

Enhancing the Cosine-Lomax Distribution: A New Exponentiated Version with Improved Flexibility and Real-World Applications. (2025). Iraqi Statisticians Journal, 2(2), 1-14. https://doi.org/10.62933/k28xzz19