Different Transformation Methods of the Lomax Distribution: A Review
DOI:
https://doi.org/10.62933/6w437q74Keywords:
Lomax distribution, , Inverse Transformation, , power Lomax distribution, , Alpha Power TransformationAbstract
Over the years, several scholars have attempted to create models for occurrences in which the data distribution exhibits varying degrees of heavy-tailedness. Various generalizations or expansions of the Lomax distribution have been suggested in order to achieve this objective. The behavior of the system is determined by two fundamental parameters: the form shape parameter and the scale parameter. The Lomax distribution effectively represents many failure patterns found in real-world situations. The versatility and wide range of applications make it an essential instrument in the investigation of dependability and survival modeling. This paper provides a comprehensive overview of several techniques for extending Lomax distribution. The included extensions include Lomax distribution, Inverse Transformation, and Alpha Power Transformations. Multiple novel and comparable distributions were deliberated and scrutinized. The research has the potential to serve as a valuable standard and encourage the development of improved distributions that can accurately represent complex events.
References
K. S. Lomax, “Business failures: Another example of the analysis of failure data,” J. Am. Stat. Assoc., vol. 49, no. 268, p. 847, 1954.
M. Rajab, M. Aleem, T. Nawaz, and M. Daniyal, “On five parameter beta Lomax distribution,” Journal of Statistics, vol. 20, no. 1, 2013.
S. K. Ashour and M. A. Eltehiwy, “Transmuted Lomax Distribution,” Am. J. Appl. Math. Stat., vol. 1, no. 6, pp. 121–127, 2013.
A. H. El-Bassiouny, N. F. Abdo, and H. S. Shahen, “Exponential lomax distribution,” International journal of computer applications, vol. 121, no. 13, 2015.
M. H. Tahir, M. Adnan Hussain, G. M. Cordeiro, G. G. Hamedani, M. Mansoor, and M. Zubair, “The Gumbel-Lomax distribution: Properties and applications,” J. Stat. Theory Appl., vol. 15, no. 1, p. 61, 2016.
M. Zubir, G. M. Cordeiro, M. H. Tahir, M. Mahmood,and M. Mansoor, “A study of logistic-lomax distribution and its applications, ” . J. Prob. Stat. Sci, vol. 15, no. 1, pp. 29-46, 2017.
A. S. Hassan and M. Abd-Allah, “Exponentiated weibull-Lomax distribution: Properties and estimation,” J. Data Sci., pp. 277–298, 2021.
M. Anwar and J. Zahoor, “The half-logistic Lomax distribution for lifetime modeling,” J. Probab. Stat., vol. 2018, pp. 1–12, 2018.
M. Nassar, S. Dey, and D. Kumar, “Logarithm transformed Lomax distribution with applications,” Calcutta Statist. Assoc. Bull., vol. 70, no. 2, pp. 122–135, 2018.
M. Ijaz, M. Asim, and A. Khalil, “Flexible lomax distribution,” Songklanakarin Journal of Science and Technology, vol. 42, no. 5, pp. 1125–1134, 2019.
H. Elgohari and H. Yousof, “A generalization of Lomax distribution with properties, copula and real data applications,” Pak. J. Stat. Oper. Res., pp. 697–711, 2020.
S. Ibrahim, S. I. Doguwa, A. Isah, and H. M. Jibril, “Some Properties and Applications of Topp Leone Kumaraswamy Lomax Distribution,” Journal of Statistical Modelling and Analytics, vol. 3, no. 2, pp. 81–94, 2021.
Abu El Azm, W. S., Almetwally, E. M., Naji AL-Aziz, S., El-Bagoury, A. A. A. H., Alharbi, R., & Abo-Kasem, O. E. (2021). A new transmuted generalized lomax distribution: Properties and applications to COVID-19 data. Computational Intelligence and Neuroscience, 2021, 1-14.
S. Khan, G. G. Hamedani, H. M. Reyad, F. Jamal, S. Shafiq, and S. Othman, “The minimum Lindley Lomax distribution: Properties and applications,” Math. Comput. Appl., vol. 27, no. 1, p. 16, 2022.
A. A. Abiodun and A. I. Ishaq, “On Maxwell–Lomax distribution: properties and applications,” Arab J. Basic Appl. Sci., vol. 29, no. 1, pp. 221–232, 2022.
J. Rahman, M. Aslam, and S. Ali, “Estimation and prediction of inverse Lomax model via Bayesian approach,” Caspian Journal of Applied Sciences Research, vol. 2, no. 3, pp. 43–56, 2013.
R. A. ZeinEldin, M. Ahsan ul Haq, S. Hashmi, M. Elsehety, and M. Elgarhy, “Statistical inference of odd Fréchet inverse Lomax distribution with applications,” Complexity, vol. 2020, pp. 1–20, 2020.
A. Soliman, and D. Ismal, “Estimation of parameters of Topp-Leone inverse Lomax distribution in presence of right censored samples, ” Gazi University Journal of Science, vol. 34, no. 4, 1193-1208, 2021.
A. A. Ogunde, A. U. Chukwu, and I. O. Oseghale, “The Kumaraswamy Generalized Inverse Lomax distribution and applications to reliability and survival data,” Scientific African, vol. 19, no. e01483, p. e01483, 2023.
Y. M. Bulut, F. Z. Doğru, and O. Arslan, “Alpha Power Lomax Distribution: Properties and Application,” J. Reliab. Stat. Stud., 2021.
N. M. Kilany, “Weighted lomax distribution,” SpringerPlus, vol. 5, pp. 1-18, 2016.
R. Bantan, A. S. Hassan, and M. Elsehetry, “Zubair Lomax distribution: Properties and estimation based on ranked set sampling,” Comput. Mater. Contin., vol. 65, no. 3, pp. 2169–2187, 2020.
E. M. Almetwally, M. Kilai, and R. Aldallal, “X-gamma Lomax distribution with different applications,” Journal of Business and Environmental Sciences, vol. 1, no. 1, pp. 129–140, 2022.
M. Ameeq et al., “A new Marshall-Olkin lomax distribution with application using failure and insurance data,” Statistics, pp. 1–23, 2024.
O. Maxwell, A. U. Chukwu, O. S. Oyamakin, and M. A. Khaleel, “The Marshall-olkin Inverse Lomax distribution (MO-ILD) with application on Cancer Stem Cell,” J. Adv. Math. Comput. Sci., vol. 33, no. 4, pp. 1–12, 2019.
J. Y. Falgore, “The Zubair-Inverse Lomax Distribution with Applications,” Asian Journal of Probability and Statistics, vol. 8, no. 3, pp. 1–14, 2020.
M. M. Buzaridah, D. A. Ramadan, and B. S. El-Desouky, “Flexible reduced logarithmic-inverse Lomax distribution with application for bladder cancer,” Open J. Model. Simul., vol. 09, no. 04, pp. 351–369, 2021.
S. Al-Marzouki, F. Jamal, C. Chesneau, and M. Elgarhy, “Half logistic inverse Lomax distribution with applications,” Symmetry (Basel), vol. 13, no. 2, p. 309, 2021.
M. A. Khaleel, A. I. Ampered, and A. K. Nafal, “Properties of [0, 1] Truncated Inverse Weibull Inverse Exponential distribution with Real Life Data Application,” Tikrit Journal of Administration and Economics Sciences, vol. 19, 2023.
A. Khalaf, K. Yusur, and M. Khaleel, “Truncated Exponentiated Exponential Inverse Weibull Distribution with Applications of Carbon Fiber and COVID-19 Data,” Journal of Al-Rafidain University College For Sciences, no. 1, pp. 387–399, 2023.
A. A. Khalaf, and M. A. Khaleel, “[0, 1] Truncated exponentiated exponential gompertz distribution: Properties and applications,” in AIP Conference Proceedings, vol. 2394, AIP Publishing, 2022.
A. Khalaf, M. Khaleel, Truncated exponential marshall-olkin-gompertz distribution properties and applications, Tikrit Journal of Administration and Economics Sciences vol. 16, pp. 483–497, 2020
A. A. Khalaf, M. Q. Ibrahim, N. A. Noori, M. A. Khaleel,“ [0, 1] truncated exponentiated exponential burr type x distribution with applications,” Iraq journal of Science, vol. 65, no. 8, pp. 15, 2024.
M. A. Khaleel, A. M. Abdulwahab, A. M. Gaftan, and M. K. Abdal-Hammed, “A new [0, 1] truncated inverse Weibull rayleigh distribution properties with application to COVID-19,” International Journal of Nonlinear Analysis and Applications, vol. 13, no. 1, pp. 2933–2946, 2022.
K. H. Habib, M. A. Khaleel, H. Al-Mofleh, P. E. Oguntunde, and S. J. Adeyeye, “Parameters estimation for the [0, 1] truncated Nadarajah Haghighi Rayleigh distribution,” Scientific African, vol. 23, no. e02105, p. e02105, 2024.
A. A. H. Ahmadini, A. Hassan, M. Elgarhy, M. Elsehetry, S. S. Alshqaq, and S. G. Nassr, “Inference of truncated Lomax inverse Lomax distribution with applications,” Intell. Autom. Soft Comput, vol. 29, no. 1, pp. 199–212, 2021.
A. A. Ogunde, A. U. Chukwu, and I. O. Oseghale, “The Kumaraswamy Generalized Inverse Lomax distribution and applications to reliability and survival data,” Scientific African, vol. 19, no. e01483, p. e01483, 2023.
A. Mahdavi and D. Kundu, “A new method for generating distributions with an application to exponential distribution,” Commun. Stat. Theory Methods, vol. 46, no. 13, pp. 6543–6557, 2017.
M. Nassar, A. Alzaatreh, M. Mead, and O. Abo-Kasem, “Alpha power Weibull distribution: Properties and applications,” Commun. Stat. Theory Methods, vol. 46, no. 20, pp. 10236–10252, 2017.
S. Dey, M. Nassar, and D. Kumar, “Alpha power transformed inverse Lindley distribution: A distribution with an upside-down bathtub-shaped hazard function,” J. Comput. Appl. Math., vol. 348, pp. 130–145, 2019.
M. E. Mead, G. M. Cordeiro, A. Z. Afify, and H. A. Mofleh, “The alpha power transformation family: Properties and applications,” Pak. J. Stat. Oper. Res., vol. 15, no. 3, pp. 525–545, 2019.
A. S. Hassan, M. Elgarhy, R. E. Mohamd, and S. Alrajhi, “On the alpha power transformed power Lindley distribution,” J. Probab. Stat., vol. 2019, pp. 1–13, 2019.
S. Dey, I. Ghosh, and D. Kumar, “Alpha-power transformed Lindley distribution: Properties and associated inference with application to earthquake data,” Ann. Data Sci., vol. 6, no. 4, pp. 623–650, 2019.
M. Eltehiwy, “On the alpha power transformed power inverse Lindley distribution,” J. Indian Soc. Probab. Stat., vol. 21, no. 1, pp. 201–224, 2020.
U. Patrick and E. Harrison, “Alpha power transformed Quasi Lindley distribution,” International Journal of Advanced Statistics and Probability, vol. 9, no. 1, pp. 6–7, 2021.
I. Elbatal, M. Elgarhy, and B. M. Golam Kibria, “Alpha power transformed weibull-G family of distributions: Theory and applications,” J. Stat. Theory Appl., vol. 20, no. 2, p. 340, 2021.
Sakthivel and A. Chezhian, “Alpha power transformed Pareto distribution and its properties with application,” Malaya J. Mat., vol. S, no. 1, pp. 52–57, 2020.
S. Nasiru, P. N. Mwita, and O. Ngesa, “Alpha Power Transformed Frechet Distribution,” Appl. Math. Inf. Sci., vol. 13, no. 1, pp. 129–141, 2019.
J. T. Eghwerido, L. C. Nzei, and F. I. Agu, “The alpha power Gompertz distribution: Characterization, properties, and applications,” Sankhya Ser. A, vol. 83, no. 1, pp. 449–475, 2021.
M. G. Ibrahim, A. S. Hassan, E. M. Almetwally, and M. H. Algomy, “Parameter estimation of Alpha power inverted Topp-Leone distribution with Applications,” Intelligent Automation and Soft Computing, vol. 29, no. 2, 2021.
Y. M. Amer, “Alpha-Power Transformed Lomax Distribution: Properties and Application,” Journal of Applied Sciences Research, vol. 16, no. 3, pp. 7–20, 2020.
A. H. Tolba, A. H. Muse, A. Fayomi, H. M. Baaqeel, and E. M. Almetwally, “The Gull Alpha Power Lomax distributions: Properties, simulation, and applications to modeling COVID-19 mortality rates,” PLoS One, vol. 18, no. 9, p. e0283308, 2023.

Downloads
Published
Issue
Section
License
Copyright (c) 2024 Alaa A. Khalaf, Mohammed Qasim Ibrahim , Mundher Abdullah Khaleel (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Licensed under a CC-BY license: https://creativecommons.org/licenses/by-nc-sa/4.0/