Construction of an Almost Unbiased Estimator for Population Variance Using Exponential - Sine Type Estimator

Authors

  • Sunil Kumar Yadav Department of Statistics, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India. Author https://orcid.org/0009-0002-2745-6094
  • Rajesh Singh Department of Statistics, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India. Author

DOI:

https://doi.org/10.62933/mz0yvj11

Keywords:

Population variance, Auxiliary information, Exponential - Sine estimator, Mean square error, Regression estimator

Abstract

In this paper, we have proposed a generalized almost unbiased estimator for estimating the unknown finite population variance  of the study variable , using auxiliary information under the exponential-cum-sine estimator framework. In many applications, the presence of bias in an estimator can be a significant drawback. Following the procedure of Singh and Singh (1991, 1993), we develop an estimator based on a single auxiliary variable, which is almost unbiased up to the order . Expressions for the bias and mean squared error (MSE) of the proposed estimator are derived up to the first order of approximation. To support the theoretical results, an empirical study using two real-life data sets has been conducted. Additionally, a simulation study confirms that the proposed estimator has lower bias (nearly zero) and achieves a minimum MSE equivalent to that of the regression estimator.

References

[1] Isaki, C. T. (1983). Variance estimation using auxiliary information. Journal of the American Statistical Association, 78(381), 117–123.

[2] Prasad, B., & Singh, H. P. (1990). Some improved ratio type estimators of finite population variance in sample surveys. Communications in Statistics - Theory and Methods, 19(4), 1127–1139.

[3] Arcos, A., Barrios, E., & Sarabia, J. M. (2005). Incorporating the auxiliary information available in variance estimation. Applied Mathematics and Computation, 160(2), 387–399.

[4] Upadhyaya, L. N., & Singh, H. P. (2006). Almost unbiased ratio and product-type estimators of finite population variance in sample surveys. Statistics in Transition, 7(5), 1087–1096.

[5] Singh, H. P., Chandra, P., & Singh, S. (2003). Variance estimation using multiauxiliary information for random non-response in survey sampling. Statistica, 63(1), 23–40.

[6] Das, A. K., & Tripathi, T. P. (1978). Use of auxiliary information in estimating the finite population variance. Sankhyā: Indian Journal of Statistics, Series B, 40, 139–148.

[7] Garcia, M. K., & Cebrián, A. A. (1997). Variance estimation using auxiliary information: An almost unbiased multivariate ratio estimator. Metrika, 45, 171–178.

[8] Gupta, S., & Shabbir, J. (2008). Variance estimation in simple random sampling using auxiliary information. Hacettepe Journal of Mathematics and Statistics, 37, 57–67.

[9] Kadilar, C., & Cingi, H. (2006). Improvement in variance estimation using auxiliary information. Hacettepe Journal of Mathematics and Statistics, 35(1), 111–115.

[10] Kadilar, C., & Cingi, H. (2006). Ratio estimators for population variance in simple and stratified sampling. Applied Mathematics and Computation, 173, 1047–1058.

[11] Singh, J., Singh, V. K., Malik, S., & Singh, R. (2013). Use of auxiliary information in variance estimation. Inspira Journal of Modern Management & Entrepreneurship, 3(1), 75–81.

[12] Mishra, P., & Singh, R. (2016). Variance estimation using arithmetic mean, geometric mean, and harmonic mean under simple random sampling. Journal of Scientific Research, 60(1–2), 97–109.

[13] Mishra, P., & Singh, R. (2016). Variance estimation using quality characteristic. Merit Research Journal of Interdisciplinary Studies, 5(2), 143–149.

[14] Singh, R., & Yadav, S. K. (2024). Efficient estimators of population coefficient of variation under simple random sampling using single auxiliary variable. Journal of Statistics Applications & Probability Letters, 11(3), 109–121.

[15] Audu, A., Singh, R., Khare, S., & Duran, N. S. (2022). Almost unbiased variance estimators under the simultaneous influence of non-response and measurement errors. Journal of Statistical Theory and Practice.

[16] Singh, R., & Rai, S. (2021). Estimating population variance using median as an auxiliary information. Journal of Scientific Research, 65(5), 222–225.

[17] Sharma, P., & Singh, R. (2013). A generalized class of estimators for finite population variance in presence of measurement errors. Journal of Modern Applied Statistical Methods, 12(2), 231–241.

[18] Sharma, P., & Singh, R. (2014). Improved dual to variance ratio type estimator for population variance. Chilean Journal of Statistics, 5(2), 45–54.

[19] Singh, R., Kumar, M., Singh, A. K., & Smarandache, F. (2011). A family of estimators of population variance using information on auxiliary attribute. In SAM ME SER, 63.

[20] Singh, R., Chauhan, P., Sawan, N., & Smarandache, F. (2008). Almost unbiased ratio and product type estimator of finite population variance using the knowledge of kurtosis of an auxiliary variable in sample surveys. Octogon Mathematical Journal, 16(1), 123–130.

[21] Singh, R., Sharma, P., & Adewara, A. (2013). A general class of estimators for estimating population variance in presence of measurement errors. Nigerian Journal of Pure and Applied Sciences, 26, 2394–2401.

[22] Singh, R., Gupta, S., & Khare, S. (2019). An exponential type estimator for finite population variance. International Journal of Applied Statistics & Systems, 5(2), 469–473.

[23] Subramani, J., & Kumarapandiyan, G. (2012). Estimation of population mean using coefficient of variation and median of an auxiliary variable. International Journal of Probability and Statistics, 1(4), 111–118.

[24] Subramani, J., & Kumarapandiyan, G. (2012). Variance estimation using median of the auxiliary variable. International Journal of Probability and Statistics, 1(3), 36–40.

[25] Subramani, J., & Kumarapandiyan, G. (2012). Variance estimation using quartiles and their functions of the auxiliary variable. International Journal of Statistics and Applications, 2(5), 67–72.

[26] Adichwal, N. K., Sharma, P., Verma, H. K., & Singh, R. (2015). Generalized class of estimators for estimating population variances using auxiliary attribute. International Journal of Applied and Computational Mathematics, 1(3), 1–10.

[27] Adichwal, N. K., Sharma, P., & Singh, R. (2015). Estimation of finite population variances using auxiliary attribute in sample surveys. Journal of Advanced Computing, 4(2), 88–100.

[28] Bhattacharyya, D., Singh, G. N., Jawa, T. M., Sayed-Ahmed, N., & Pandey, A. K. (2021). An exponential‐cum‐sine‐type hybrid imputation technique for missing data. Computational Intelligence and Neuroscience, 2021(1), Article ID 4845569. https://doi.org/10.1155/2021/4845569

[29] Yunusa, M. A., Muili, J. O., Audu, A., & Singh, R. V. K. (2023). A sine type median based estimator for the estimation of population mean. Oriental Journal of Physical Sciences, 8(1), 21–26. https://doi.org/10.13005/OJPS08.01.05

[30] Bahl, S., & Tuteja, R. K. (1991). Ratio and product type exponential estimators. Journal of Information & Optimization Sciences, 12(1), 159–164.

[31] Singh, S., & Singh, R. (1993). Almost filtration of bias precipitates: A new approach. Journal of the Indian Society of Agricultural Statistics, 45(2), 214–218.

[32] Singh, S., & Singh, R. (1991). Almost filtration of bias precipitates: A new technique. Aligarh Journal of Statistics, 11, 5–8.

[33] Singh, S. (2003). Advanced Sampling Theory with Applications: How “Michael” Selected “Amy” (Vol. 2). New York, NY: Springer Science & Business Media.

[34] Murthy, M. N. (1967). Sampling Theory and Methods. Calcutta, India: Statistical Publishing Society.

fig 5

Downloads

Published

2025-11-04

Issue

Section

Original Articles

How to Cite

Construction of an Almost Unbiased Estimator for Population Variance Using Exponential - Sine Type Estimator. (2025). Iraqi Statisticians Journal, 2(2), 114-125. https://doi.org/10.62933/mz0yvj11