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Inferential methods of statistical distributions have reached a high level of interest in 
recent years. However, in real life, data can follow more than one distribution, and 
then mixture models must be fitted to such data. One of which is a finite mixture of 
Rayleigh distribution that is widely used in modelling lifetime data in many fields, 

such as medicine, agriculture and engineering. In this paper, we proposed a new 
Bayesian frameworks by assuming conjugate priors for the square of the component 
parameters. We used this prior distribution in the classical Bayesian, Metropolis-
hasting (MH) and Gibbs sampler methods. The performance of these techniques were 
assessed by conducting data which was generated from two and three-component 
mixture of the Rayleigh distribution according to several scenarios and comparing the 
results of the scenarios by calculating the mean of classification successful rate 
(MCSR) and the mean of mean square error(MMSE). The results showed that Gibbs 

sampler algorithm yields a better computation results than the others in terms of 
MMSE and MCSR. 
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1. Introduction  

Mixture models have been widely used in 

several fields of research. Its applications have 

been considered as a proper tackling tool for 

many problematic issues with data of interest 

when it does not belong to a specific 

distribution. When several subpopulations are 

merged in unknown weights to construct a 

larger population, the existing distribution will 

be invalid in terms of fitting them to such a 

population. As an example, some biological, 

agricultural and electrical items may be formed 

from more than one subpopulation depending 

on failure time, gender, age, class or any other 

categories. To model and infer some aspects of 

such a population, a mixture model may be 

fitted to data collected from engineering, 

biological and physical fields. Several studies 

have been conducted to fit a mixture model to 

several types of real-world data. Mixture of 

Laplace and normal distributions was an earlier 

study that has been proposed to model wind 

shear samples [1-2]. Justice and crime data was 

inferred by a mixture of normal distribution 

[3]. In a lifetime, the population may be 

divided into several subpopulations depending 

upon device failure that is required to be 

modelled by a mixture of exponential 

distributions [4]. Image compression and 

pattern recognition studies are analysed by 

using the Gaussian mixture model to improve 

the maximum likelihood of the model by 

showing the impact of split and merge 

operations [5]. Mixture of t-distribution is also 

proposed to merge sub-sets within one large set 

of observations with long normal tails [6]. In 

classifying individuals in the experiments of 

blood science based on their density function of 

the mixture models, a good classifier was built 

to classify new histograms with an unknown 

label into iron and normal deficient groups of 
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red blood (RBCs)[7]. The key importance of 

fitting a mixture model to data is inferring 

some aspects of the number of underlying 

components and their parameters. 

Theoretically, mixture models may consist of 

components that represent the same distribution 

family or different ones, which makes them an 

important predicting or confirmatory tool in 

several analytical studies. Many techniques 

have been proposed in the literature to infer a 

mixture model. [8-11] employed maximum 

likelihood(ML) as a classical method that can 

be used in inferring mixture of multivariate 

normal distributions. However, researchers can 

come across some drawbacks that can 

significantly undermine the accuracy of 

inferences, such as knowing the exact number 

of components and membership of 

observations.  Many techniques have been 

proposed to tackle these issues. One of which is 

by examining the actual underlying structure in 

terms of how many components they involved 

[12-13]. Several studies considered turning the 

incomplete-data likelihood into a complete one 

by adding a latent variable which can be an 

optimal way of copping uncertainty in the 

number of components [14]. A famous 

technique was employing the EM algorithm via 

maximum likelihood to infer the model 

parameters and observation memberships [15-

16]. However, some technical issues have been 

well-documented within the progress of the 

EM algorithm, such as sluggish convergence 

and being stuck in the local optima [17-18]. To 

overcome the latter issue, many studies have 

come to light by proposing sampling 

algorithms from the whole space of the 

parameters by constructing the posterior 

distribution of parameters via Bayesian 

inference [19-23]. One of the Bayesian 

inferential algorithms is Gibbs sampler in 

which the posterior distribution of a sub-vector 

can be drawing from the conditional density of 

one parameter given the remaining ones [24]. 

Moreover, the Metropolis-Hastings is another 

Bayesian algorithm that depends on simulating 

samples from a mixture of posterior densities to 

estimate parameters [25-27]. In recent studies, 

several Bayesian approaches were proposed to 

infer the optimal number of components in a 

Gaussian mixture model [28]. [29] proposed 

Approximate Bayesian Computation–

Population Monte Carlo (ABC–PMC) 

algorithm as an alternative framework for 

inference on finite mixture models. [30] studied 

the use of Gibbs sampler as a clustering 

algorithms based on finite mixture and infinite 

mixture models of exponential approximation 

to several multinomial generalized Dirichlet 

distributions. 

 

This study is to infer the Rayleigh mixture 

distribution so that it can be used to model 

lifetime data sets. This can be done by the 

following motivations:  

 

a. To consider a conjugate prior distribution 

for the model parameters and derive the 

posterior distribution of weight and 

component parameters. 

b.  To employ the K-means algorithm and 

Bayesian information criteria (BIC) to 

determine the underlying number of 

components.  

c. To construct Gibbs sampler and Metropolis-

Hasting algorithms to estimate model 

parameters.  

d. To estimate observation memberships and 

calculate the successful rate of clustering 

observations into two or three components. 

e. To compare the three methods to find their 

advantages and disadvantages.  

 

The rest of the study is organized as 

follows: Section 2 provides the pdf of the 

Rayleigh mixture distribution. The inferential 

methods are studied in Section 3. In Section 4, 

simulation data according to various scenarios 

were used to evaluate the three methods by 

mean square error and classification successful 

rate. Advantages and disadvantages of the three 

methods are given in Section 5. Conclusion is 

provided in Section 6.  

 

 

2. Methodology 
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The time of two consecutive occurrences 

can be defined as a random variable following 

the Rayleigh distribution. It may refer to the 

time of an item which stopped functioning or 

the time between two failures. Therefore, 

inference of such a model is required regularly. 

The probability density function(pdf) is written 

as  

 (   )  
 

  
  

   

                      (1). 

In many scenarios of lifetime data, a sample 

may come from several subpopulations to form 

a large one, which leads to the impossibility of 

applying the known distribution. In such cases, 

the mixture model is used to deal with this 

issue. One of these models that is used for this 

purpose is a finite mixture of Rayleigh 

distribution. The (pdf) function of such a model 

based on   components is  

 (     )  ∑   
  

  
   

   
 

   
 
  

                            (2) 

Where ∑   
 
       <       

(                       )
 ,       . 

 

3. Inferential Methods 

 

      The traditional method of inferring the 

mixture models is by forming maximum 

likelihood (ML). As the observation 

memberships are unknown at this stage, the 

resulting (ML) is called incomplete-data 

maximum likelihood, and it is defined as 

 (   )  ∏ ∑   
  

  
   

   
 

   
 
  

   
 
                  (3) 

Where   (          )
 . 

Here, the component number is unknown and 

can be considered as hidden states, which is 

defined by a latent or indicator vector   
(          )

   where    (             )
  

is a missing variable and it defines as 

    {
                                
           

                                 

Hence, the likelihood function of complete-

data is  

 (     )  ∏∏[  
  
  
   

   
 

   
 

]

    

   

 

   

         ( ) 

Let    be the set of all items of the component 

j, where 

  ={                      }         

To simplify the above equation, we re-write it 

as 

 (     )

   
    

     
   

∏   
     

      
    

   

  
     

      
   

  

 ∑      
  

   

   
 

 

  

 ∑      
  

   

   
 

     

 ∑      
  

   

   
 

,                         (5) 

Where        

To estimate the parameters of eq. (5), several 

methods were developed. In this work, 

Bayesian techniques are conducted to estimate 

the parameters. To do so, conjugate priors were 

used to evaluate posterior distributions of the 

model parameters by three different methods. 

The next subsections show the details of these 

methods. 

 

3.1 Determine the number of components. 

 

The above methods depend on known 

allocation   . Therefore, we may use a 

clustering algorithm to provide us with the 

potential number of components and their 

estimated memberships. In this work, we 

consider the K-means algorithm [31] to specify 

the initial allocation, where k=1, 2,…, n. Then, 

we assess the suitable number of components 

according to DIC [32] which has the formula 

     ̅      
   Where 

 ̅  
∑   
 
   

 
, and          (     ), 

   is the number of parameters.  

We use the K-means to cluster data into K=1, 

2, 3, 4,… ,10, and calculate DIC for every k. 

Then, the estimated number of components 

would correspond to the smallest DIC value. 

This will also determine the observation 

memberships, so that we can apply the 

posterior estimation of the first method 

straightforward. However, in the second and 

the third methods, observation memberships 

will be updated at each iteration until achieving 

convergence which gives privilege over the 

first method. 
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3.2 Bayesian Framework 

 

To construct a Bayesian framework, conjugate 

priors are considered for     
 . In so doing, we 

let 

      (          )         
(          )

   and the (pdf) is written as 

 (    )  
 (∑   

 
   )

∏    
 
   

 ∏  
 

     
                     (6) 

We also let   
          (   )  where 

        , and its pdf is written as  

 

 (  
     )  

  

    
 
 (   )  

  

  
 
                          (7) 

Note that, unlike many studies in the literature, 

the novelty of study that we assume a 

conjugate prior for the square of the component 

parameters   
 . This will simplify deriving the 

posterior distribution.   

 

From multiplying eq.(5), eq.(6) and eq.(7), we 

can formulate the joint pdf as 

 (      )  

 (     )
 (∑   
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∏    
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 (   )
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Simplifying the above equation will lead to 
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               (9) 

 

Here,   is the quantity of all remaining terms 

that can be ignored when taking the integral 

with respect to the parameters of interest. At 

this point, the posterior distribution of   
    is 

  
            (       

 

 
∑   

   
   

) (10). 

      The expected value of    
    is calculated 

according to the formula 

 

 (  
   )  

  
 

 
∑   

   
   

    
, 

Which leads to 

 ̂  √
  

 

 
∑   

 
  
   

    
                                     (11) 

 

In the same manner, the posterior distribution 

of   is  

      (                   ) (12)                                                                             

 

and the estimated value of   will be equal to 

 

 ̂   (    )  
     

∑ (     )
 
   

                       (13) 

 

The probability that the object i comes from 

class j can be computed by the formula 

 ̂    (     | ̂ 
   ̂   )  

 ̂   (    ̂ )

∑  ̂   (    ̂ )
 
   

  ,(14) 

where   ̂  ( ̂    ̂      ̂  )  The observation 

memberships can be drawn from multinational 

distribution according to  ̂      (   ̂ ).    is 

updated with respect to the estimated  ̂ .  
Observation memberships are drawn from 

    (   ̂ ) after evaluating the Bayesian 

estimators  ̂ . 
 

3.3 Gibbs Sampler algorithms 

 

       Bayesian estimation for a mixture of 

Rayleigh distribution can be constructed 

through data augmentation by using the Gibbs 

sampler scheme for performing MCMC. This 

scheme estimates the augmented parameter 

(   ) by drawing it from the posterior 

distribution  (     ) of the complete-data. 

The posterior distribution of the model 

parameters is proportional to the joint pdf 

which is defined in (8). The Gibbs sampler 

algorithm starts with some initial allocations 

 ( ) that can be found from K-means 

algorithms and fixed values for the parameters 

     , where            

and  ( )  *  
( )   

( )     
( )+. Then, we 

repeat the following steps for          . 

 

a) The parameters (  
( )   

( )     
( )) can be 

drawn from the Dirichlet distribution 

    (     
(   )       

(   )      
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(   )), Conditional on the allocations 

 (   )  and   , where   
(   )     

(   )
. 

b) Draw the components parameter (  
 )  

from Inv     (  
(   )      

 

 
∑   

 
  
(   )

   
) , provided that      

(   )
. 

c) Computing    
( )

 by the formula shown in 

(14): 

   
( )  

  
(   )   (   (  

 )(   ))

∑   
(   )   (   (  

 )(   )) 
   

  

d) Updating the allocation of all observations 

   conditional on estimated  ̂ 
( )

 by 

sampling   
( )

 independently for each 

          from the conditional 

distribution   
( )
     (    

( )
), which 

results in the new allocations 

   
( )  {       

( )               } 

Increase r by one, and return to step (a). 

 

3.4 Metropolis-Hastings algorithm 

 

        One of the importing tools is drawing 

samples from the posterior distribution by the 

use of a Metropolis-Hastings algorithm [25-

27]. Here, the posterior distribution of   as  in 

eq.11 and eq.13 is used. The MH algorithm, 

starts with some initial parameters  ( ) , and 

initial allocation   
( )

 that can be found from K-

means algorithms. We then repeat the 

following steps for r=1, 2, …R. 

 

a) i) Propose a new parameter   
 (   )  by 

drawing from a proposal density 

  (  
    

 (   )). Here    will be the density 

of the normal distribution. For sampling 

from normal distribution is quite critical in 

terms of specifying mean and standard 

deviation. The suitable choice of standard 

deviation is to be calculated for each 

component from   
  to ensure that we will 

cover all the area of parameter space which 

leads to accurate estimation.   

 

ii) Propose a new parameter  (   ), where 

 (   )  (  
(   )   

(   )     
(   ))  by 

drawing from a proposal density 

  (   
(   )), such that ∑   

(   )      
   , 

where            . We then calculate 

  
(   )    ∑   

(   )   
   . Here    will 

be the density of uniform distribution. 

 

b) i) Move the sampler to   
 (   ) with 

probability    (    ), where 

   
 (  

 (   )      )  (  
 (   )   

 (   ))

 (  
 (   )      )  (  

 (   )   
 (   ))

.                         

If       (    ), where    is a random 

number from the uniform distribution 

 (   ), then accept   
 (   ) and set 

  
 ( )    

 (   ), otherwise reject   
 (   ) 

and set   
 ( )    

 (   ). Note that the 

quantity  (  
 (   )      ) is the pdf of 

inverse gamma distribution with 

parameters shown in eq.(11).  

 

ii) Move the sampler to  (   ) with 

probability    (   ), where 

  
 ( (   )  )  ( 

(   )  (   ))

 ( (   )  )  ( 
(   )  (   ))

.          (15) 

If       (   ), where    is a random 

number sampled from the uniform 

distribution  (   ), then accept  (   ) and 

set  ( )   (   ), otherwise reject  (   ) 
and set  (   )   (   ). Here, 

 ( (   )  ) represents the pdf of the 

posterior distribution shown in eq. (13) and 

   is the pdf of U(0,1) which is usually 

equal to one. 

c) Calculating    
( )

 by eq. (14) as shown 

below: 

   
( )  

  
(   )  (   (  

 )(   )

∑   
(   )  (   (  

 )(   ) 
   

  

 

d) Updating the classification of all 

observations    conditional on estimated 
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 ̂ 
( )

 by drawing   
( )

 independently for 

each           from the multinomial 

distribution   
( )
     (   ̂ 

( )), which 

results in the new classification   
( )  

{       
( )               }. 

Increase r by one and return to step (a). 

 

4. Simulation 

 

Data can be generated from two- components 

of the Rayleigh mixture distribution as follows: 

a. Set the sample size to be of   observations 

and   (        )
 . 

b. For the observation          , we 

generate        (   ). 
c. If the      , then generate     (    ) 

and set observation membership to be 

   (   )
 . Otherwise, generate 

    (    ) and set observation 

membership to be    (   )
 .  

We can also generate data from three- 

components of the Rayleigh mixture 

distribution as follows: 

a. Set the sample size to be of   

observations and 

  (              )
 . 

b. For the observation          , we 

generate        (   ). 

c. If the      , then generate     (    ) 
and set observation membership to be 

   (     )
 . If         , generate 

    (    ) and set observation 

membership to be    (     )
 . 

Otherwise, generate     (    ) and set 

observation membership to be    

(     ) .  

Note that  (    ) is the pdf of Rayleigh 

distribution that is defined in Eq. 1. It is also 

important to mention that is at the end of step c, 

we know each observation come from which 

component.  

 

To generate    from the mixture of two 

components, we use the following predefined 

values for the parameters   (        )
 , 

where 

(        )  
(        ) (          ) (         ), and 

sample sizes                . Whereas, 

to generate    from the mixture of three 

components, we use the following predefined 

values for the parameters 

  (              )
 ,where 

(              )  
(               ) (                 ),
 (                 ) and 

               . After getting  ̂ of the 

three methods, we calculate MSE and CSR for 

each data set generated from a particular 

scenario. The results of various scenarios and 

methods were compared by the mean square 

error (MSE) and the classification successful 

rate (CSR) of T replications. At iteration t,  

     can be calculated according to the 

formulas 

     
∑ ( (    )  (    ̂

( )))
  

   

 
. 

  

For all replications, the mean of MSE was 

computed as 

     
∑     
 
   

 
  where      is the MSE of 

the mixture probability density function in the 

replication    . 

 

For computing MCSR, we let     be 

     *    ̂ 
( )          +. 

Here,  ̂ 
( )

 is denote the estimated membership 

of the observations in the replication    . The 

classification successful rate is computed as 

     
   

 
 , for the replication    . 

The mean of classification successful rate 

(MCSR) can be computed as 

     
∑     
 
   

 
, 

 

Where   is the total number of replications 

which has been chosen to be 500 in this study. 

 

To apply the methods, we first determine the 

number of components according to K-means 

algorithms that are mentioned in Section 3.4. 

We then apply the three methods to the same 
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data that was simulated from one particular 

scenario. After applying the methods of 

posterior expectation, Gibbs sampler and 

metropolis-hasting to the simulated data 

according to the three scenarios of predefined 

values and four sample sizes. It can be seen 

from Table 1 that the Gibbs sampler 

outperformed the other two methods in terms 

of both MMSE and MCSR for all cases. The 

table also shows that the metropolis-hasting 

method gives good results compared to the 

traditional posterior expectation. In Table 2, it 

can be noticed that estimation of the parameters 

is also good but not better than in the case of 

two components as shown from the values of 

MMSE and MCSR. The Gibbs sampler is also 

outperformed the others in all scenarios. 

 

To apply the methods, we first determine the 

number of components according to K-means 

algorithms that are mentioned in Section 3.4. 

We then apply the three methods to the same 

data that was simulated from one particular 

scenario. After applying the methods of 

posterior expectation, Gibbs sampler and 

metropolis-hasting to the simulated data 

according to the three scenarios of predefined 

values and four sample sizes. It can be seen 

from Table 1 that the Gibbs sampler 

outperformed the other two methods in terms 

of both MMSE and MCSR for all cases. The 

table also shows that the metropolis-hasting 

method gives good results compared to the 

traditional posterior expectation. In Table 2, it 

can be noticed that estimation of the parameters 

is also good but not better than in the case of 

two components as shown from the values of 

MMSE and MCSR. The Gibbs sampler is also 

outperformed the others in all scenarios. 

Overall, all methods showed reasonable results 

and the improvement of results increased as the 

sample size increased. 

 

The graphs of Figure 1 and Figure 2 show the 

curves of the mixture pdf based on the true 

values that we used to generate the data and the 

estimated values of the parameters by the 

posterior expectation, Gibbs sampler and 

metropolis-hasting. They show these curves 

with respect to the space of the random 

variable. It can be seen that the curves become 

obvious in terms of the number of model 

components when there is a large distance 

between the component parameters. The graphs 

also show that the curves of pdf estimated by 

Gibbs sampler and MH are close to the one 

based on the true values, which means that the 

estimations are good in all scenarios. 

 

5. Conclusion and discussion 
 

      We proposed the conjugate priors of the 

inverse gamma distribution for the square of 

component parameters which leads to a 

posterior distribution of the same distribution. 

We also used the Dirichlet distribution as a 

conjugate prior for the weight parameters, 

which resulted in posterior distributions of the 

same distribution. We then used the derived 

posterior distributions in the popular Bayesian 

framework, Gibbs sampler and Metropolis-

Hastings. These methods may be used with any 

number of components of a finite mixture. 

However, as the number of components 

increased, the accuracy of the estimation 

decreased unless we used large samples. The 

important finding that can be concluded from 

this study is that using conjugate priors can 

result in accurate posterior distributions that 

give the best estimators. We also conclude that 

Gibbs sampler and MH methods perform better 

than EM algorithms that has been discussed in 

a recent publication [16]. The possible reason 

is that the EM algorithm at the maximize step 

 

 may be stuck in the local maximum. Whereas 

Gibbs sampler and MH are based on sampling 

from the whole posterior distribution, which 

can lead to better estimation. 
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Figure 1: Figure shows the curves of the probability density function  (   ) of the two-components mixture model that 

is calculated according to Eq. 2 for data generated from scenarios (        )  (        ) (          ) (        ), 
which represent the columns from left-to-right, respectively. The rows from top-to-bottom represent the sample sizes (60, 

90, 120, 200), respectively. 
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Figure 2: Figure shows the curves of the probability density function  (   ) of the three-components mixture model that 

is calculated according to Eq. 2. , according to the predefined parameters scenarios 
(              )  (               ) (                 ) (                ) Which represent the columns from 

left-to-right, respectively. The rows from top-to-bottom represent the sample sizes (60, 90, 120, 200), respectively. 
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Table 1: The table shows the MMSE and MCSR of applying the methods of estimating parameters by posterior 

expectation, Gibbs sampler and metropolis-hasting based on three scenarios of parameters and four different sample 
sizes. 

 

 

Table 2: The table shows the MMSE and MCSR of applying the methods of estimating parameters by posterior 
expectation, Gibbs sampler and metropolis-hasting based on three scenarios of parameters and four different sample sizes 

for data generated from three components mixture of Rayleigh distribution. 
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